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Rheological similarity is introduced for flowing incompressible isotropic continuum and on this 
basis are discussed some aspects of hydrodynamic similarity of non-Newtonian flows . 

If we are interested in non-Newtonian flows the question of scaling-up and modelling becomes 
far more complicated than in the case of hydrodynamics of Newtonian liquids . New quality 
becomes the choice of model liquids, which are frequently used instead of the required material 
not only for obtaining the dynamic similarity, but also because of reasons of health protection, 
security etc. The choice of model liquids is rather complicated by the fact that we usually do not 
know in advance all aspects of mechanical behaviour of individual non-Newtonian materials 
and are thus not able to formulate fully in advance our requirements on the model liquid. The 
dimensional a~alysis and the similarity method seem to have an open field in engineering of non­
Newtonian liquids as by them even on basis of an incomplete information certain conclusions 
can be formulated. Their wider use was until recently prevented by lack of sufficiently adaptable 
way of formal description of rheological properties enabling a suitable mathematical modelling 
of the flow. Most of the dimensional and similarity methods were therefore until recently limited 
to the simplest, i.e. visco-inelastic rheological phenomena 1- 5 which very often failed in confronta­
tion with experiments or. materials of various provenience. Only the results of non-linear mechanics 
of continuum attained in the last thirty years and summarized for example in the monographies 
by Eringen6 , and especially by Truesdell and Noll7 led to further progress in application of di­
mensional resp. similarity methods in description of the flow of rheologically complex materi­
als8 -10 as well as to some more generalized considerations concerning the hydrodynamic 
similarity of non-Newtonian flows 11,12 . 

In this study we have made an effort for a more general and systematic explanation 
of basi cal similarity problems of non-Newtonian flows. We begin with the concep­
tion of hydrodynamic similarity in the sense of identity corresponding to normalized 
mathematical flOW13

-
15 models with the conception of operational parameters 

defined on basis of boundary conditions and macroscopic balances I 1 , 13 and with 
rheological similari ty l6-19 based on the principle of dimensional invariance of rheo­

logical constitutive equations. 
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Similarity of Non-Newtonian Flows. r. 785 

MATHEMATICAL FLOW MODEL 

Mathematical description of the flow based on the mechanics of continuum usually 
operates with the velocity field v(r , t) , the pressure field p(r, t) and the field of shear 
stress 't(r , t). Without regard to the type of liquid and the flow situation, the fields 
of these physical quantities must for each r, t of the limited time-space region comply 
with relations* 

e(8vj8 t + v . V'v) = - V'(p + G) + V . 't , (1) 

which means the Newton and Cauchy motion principles and with rela'tion 

V'.v=O , (2) 

the principle of conservation of mass for the flowing continuum. 
Mathematical model of the flow is a system of relations which within the hypothesis 

of continuum express the mechanical aspects of flow of given liquid in a given flow 
situation. Apart from basical principles of conservation (1) (2), (eventually of further 
ones, for inst. of the principle of conservation of internal energy, enthalpy etc.), 
such mathematical flow model includes also constitutive relations which describe 
mathematically the relevant properties of the liquid and complementary conditions, 
i.e. boundary and initial conditions, symmetry conditjons, eventually the informations 
on macroscopic balances which by stating certain properties of quantities v resp. 't 

in some regions limit the type of the flow situation. 

COMPLEMENT AR Y CONDITIONS 

In mathematical formulation of an actual flow problem the velocity and stress fields are not 
known, in general ; their determination is usually the aim of solution of the mathematical model. 
However, some of properties of these fields are considered known or given and these constitute 
an important component in formulation of the mathematical model. 

For our further considerations is not substantial the detailed structure of various 
possible types of complementary conditions, it suffices to realize several general 
'factors which are always taken into consideration in their formulation: 1. complemen­
tary conditions are defined in certain geometrical points (points, curves, planes, 
volumes limited by planes) which can be from the dimensional point of view character­
ized by a characteristic lengths Rc (the exceptions are e.g. the problems with a point 
momentum source, i.e. hydrodynamics of a jet in semiinfinite space etc., whose 
formulation does not include any characteristic lengthS). Further geometrical in­
formations can be summarized into conditions of geometrical similarity. 2. Comple-

All our further considerations are limited to the case of liquids with constant density (! and 
to isothermal flow. Symbol G in Eq . (1) represents the potential of volumetric forces. 
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786 Wein, Wichterle, Nebrensky, Ulbrecht: 

mentary conditions which for macroscopic balances include either the characteristic 
kinematic information -velocity Ue , angular velocity We' volumetric flow-rate Qe 

etc. - or the characteristic dynamic criterion - force Fe, moment Me, shear stress 
resp. pressure difference Pc etc. If the kinematic criterion is given, the dynamic 
parameter is the dependent quantity and vice versa. 3. At the given parameter Rc 
the kinematic parameter can be always represented by the characteristic velocity U c 

and the dynamic criterion by the characteristic pressure Pc, as for some of typical 
cases will be shown in Part III of this series30

• 4. Each hydrodynamic problem except 
artificially for:mulated ones is thus characterized from the dimensional point of view 
by three parameters - characteristic lengths R e, characteristic velocity U e' and charac­
teristic pressure Pc. In theformulation of the problem one of the parameters Pc, Ue, Re, 
is missing and its determination is the subject of solution of the mathematical model: 

(3) 

5. The three mentioned operational parameters suffice for normalisation of all 
complementary conditions into the dimensionless form, i .e. invariable in respect 
to change of the reference system of physical units. Since the identity of normalized 
complementary conditions is an indispensable condition for identity of normalized 
mathematical models as a whole, the three operational parameters whose values are 
derived from formulation of complementary conditions, are a suitable normalization 
mean of all quantities which appear in the formulation of the problem. 6. The time 
variable can be in principle normalized by the parameter (Re /Ue). For several types 
of non-stationary problems the boundary conditions include explicitly the functions 
of time so that on their bases can be formulated the non-stationarity of the process 
characterizing the time parameter te, which is independent on (R c/Ue). In these 
problems which we shall denote as substantially non-stationary it is advisable to 
normalize the time variable as well as all other derivations in relation to the time so 
that the non-stationary complementary conditions in the normalized form will not 
contain the dimensionless parameter St = teUe/Re. In the problems which are not 
substantially non-stationary but in which, for reasons following from the time­
dependence of rheological properties of considered liquids, the scale of convective 
time changes is nevertheless significant, it is possible to choose te as an arbitrary 
function of parameter Rc/Ue, according to the physical nature of the problem. 
On the contrary, there exist such substantially non-stationary problems, for which it is 
not possible to formulate the characteristic velocity in some other way than on the 
basis of the characteristic time-interval and the characteristic length (forced oscilla­
tjons), i.e. as a function of ratio Re/te. From the dimensional point of view, however, at 
preserving the similarity of boundary conditions, i.e. especially St = idem, the prob­
lem is characterized by a single parameter with time dimension Se' which can be either 
te, Rc/Uc or their arbitrary combination . 
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Similarity of Non-Newtonian Flows. 1. 787 

HYDRODYNAMIC SIMILARITY 

The complementary conditions are defined in certain geometrical locations. In 
solving the practical questions related especially to the model experiments resp. 
to the use of model liquids in these experiments, we are interested what additionally 
beside the geometrical similarity of these geometrical points as a whole, must be 
in the experiments fulfilled so that the studied phenomena are in a defined way 
comparable with those which can be expected from the designed unit. 

The solution of these questions is usually based on an intuitively understood 
similarity as a generalization of geometrical similarity and the term of hydrodynamic 
similarity 13 , 14 of two processes is introduced as the identity of velocity fields, stress 
fields etc. in a suitable chosen time-space reference systems (mutually transformable 
by the Galilei-Newton transformations 14

) with the exception of the scale or units 
in which are individual quantities expressed. This means that in suitable chosen 
reference systems, the normalized fields of velocity, pressure and shear stresses 
defined by relations t* = tlte, r* = rlRe' v* = vlUe, P* = Pipe' -r* = -rIpe are 
identical, i.e. v*(r*, t*) = idem etc. 

If two hydrodynamic situations are similar in the mentioned sense, in corresponding points 
and time intervals (according to Galilei-Newton transformation inclusive the change of length 
and time scales) for inst. velocity vectors have the same direction (with regard to geometrical 
objects which are a part of the considered situation) and the ratio of all pairs of in this way 
mutually related velocity vectors is constant and equals to the ratio of characteristic velocities 
etc. The above required "comparability" of processes in hydrodynamically similar flow situations 
is in this way made in a single and easily followed manner. 

The mentioned formulation of hydrodynamic similarity includes implicitly some of conditions 
necessary for attaining it and these are the similarity conditions of complementary conditions. 
If the normalized fields of quantities describing the processes in two hydrodynamically similar 
flow situations are identical, then obviously must be identical as well the normalized expression 
of their properties in boundary areas, which are formulated by complementary conditions. 
Similarity of complementary conditions is not, however, sufficient for obtaining the hydrodynamic 
similarity; its further conditions are the mechanical properties of compared liquids expressed 
by the data of density and constitutive relations. As it is obvious that for the identity of normalized 
field s of velocity, stress etc., the sufficient condition is the identity of normalized mathematical 

"flow models we are looking for conditions ensuring the identity of normalized flow models 
instead for sufficient conditions of hydrodynamic similarity. 

For example for incompressible Newtonian liquid the rheological constitutive equation, = /1 D, 
is valid where D is the rate of deformation tensor and /1 is the material constant, i.e. viscosity. 
The momentum balance (1) can be in such case modified by substituting the mentioned constitu­
tive relation and by using the continuity Eq. (2) into relation 

a(8v/at + v . Vv) = - V(p -1 G) + /1(V 2
) . v, 

in which are implicitly included all relevant mechanical properties of the incompressible Newto­
nian liquid at isothermal flow . In such case, the normalized momentun balance can be written 
in the form 

(l iSt) (8v* / ot*) + v* . Vv* = Eu V*p* + (I / Re) (v*2) v* , 

Collection Czechoslov. Chem. Commun. /Vol. 37/ (1972) 



788 Wein, Wichterle, Nebi'ensky, Ulbrecht: 

where St = te' Ue/Re, Eu = Pe/CQU;), Re = UeReQ/fl are the criteria of dynamic similarity and 
p* = (p + G)/Pe is the normalized hydrodynamic potential. The necessary conditions of hydro­
dynamic similarity can be in this case formulated as a summary of similarity of complementary 
conditions and of identity of two of three dimensionless similarity criteria, for inst. St = idem, 
Re = idem resp. Eu = idem (according to the above given considerations identity of the third 
of these dimensionless parameters is already guaranted. 

RHEOLOGICAL SIMILARITY 

For non-Newtonian liquids is the question of sufficient conditions of hydrodynamic 
similarity closely related with the structure of corresponding constitutive relations. 
Generally considered, all types of rheological constitutive relations which proved 
suitable in description of flow properties of isotropic incompressible materials are 
functional relations related to a material point (of equalities resp. inequalities) 
between some of tensors of relative deformations d, tensor of shear stress -r, material 
time derivatives of these tensors and their history in a given material point6

,7. In this 
sense, the most general constitutive equation can be formally written as 

H [-res), ... , -r(i)(s), ... , des), ... , d(j)(s), ... , sJ = 0, (4) 
s=o 

where s is a time variable measuring the time from now on s = 0, into the past, 
s -t 00, H is the symbol of the material functional. Time derivatives symbolized 
by upper indices with quantities in relation (4) are defined by relations 

DX ax 
- = - - + (v. v) x - a(Q x X - X x Q) + bD. X, (5a) 
Dt at 

X(k) = Dx(k -1) /Dt ; X(O) = X , (5b), (5c) 

where a and b are numerical constants corresponding to the type of material deriva­
tive6 , 30, 0 is the rate of deformation tensor 

o = Vv + (Vv) T , (6) 

for which is valid 0 = d(1), and Q is the vorticity vector 

Q=Vxv. (7) 

Limitations regarding the possible forms of the functional H , the tensor of relative 
deformations and material differentiations with respects to time which follow from 
requirements of objectivity and material indifferences 7 are further irrevelant. 
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Similarity of Non-Newtonian Flows. I. 789 

Let us study the structure of the constitutive functional H (4) from the dimensional 
point of view. We see that at most by introduction of two dimensional parameters, 
e.g. of the parameter SI with the dimension of time and of the parameter 'rl with 
the dimension of stress, we can transform the functional H into a dimensionless form 11. 

We can obtain the same information as from the functional in the dimensional form 
(4) from values of two dimensional material constants SI and T(, and the functional 
in the dimensionless form is 

H+ [-r+(s+), ... , -r+(i)(s+), ... , d+(s+), .. , d+(j)(s+), ... , s+] = 0, (8) 
, + ;0 

where 

(9a, b, c) 

Complete mathematical model of the flow includes quantities which appear both 
in differential balances (1), (2) and in the constitutive equation (4). In normalization 
of this mathematical model there arises a question when should these quantities be 
normalized by operational parameters Ue, R e, Pc resp. te, and when they should be 
normalized by material constants (2, 'r(, and Sl. 

As some terms in differential balances can be for different liquids, at the same 
complementary conditions, sometimes negligible the mathematical model of the flow 
can be normalized so that there appear in the normalized formulation of comple­
mentary conditions as few numerical parameters-criteria of similarity as possible. 
This was for example the reason for introduction of a normalized time variable t* 
in the form tlte, because with such modification the criterion St changes from the· 
formulation of complementary conditions into the formulation of the normalized 
momentum balance. 

As all kinematic quantitjes can be expressed with regard to the velocity field 
v(r, t), they are normalized by use of kinematic operational parameters Ue, Re, te 

or Se in a form 

(lOa, b) 

The situation is different with the stress tensor. In formulation of hydrodynamic 
problems in the normal way, i.e. by giving the boundary conditions for the velocity 
field, the dynamic operational parameter Pc becomes a dependent variable. Obviously, 
it is not suitable to normalize quantities appearing jn the constitutive relation (4) 
just by this parameter. Furthermore, the stress tensor in the mathematical model 
is relating together the differential momentum balance with the constitutive relation, 
while in the solution is the stress tensor eliminated in favour of the kinematic quan­
tities. Thus the stress tensor is first of all a mean for expressing the flow properties 
of the given material. Vice versa, the material derivative is an operator whose be-
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790 Wein, Wichterle, Nebi'ensky, Ulbrecht: 

haviour fully depends on the flow kinematics. Therefore, the dynamic tensors are 
normalized in the form 

(IOe) 

The complete normalized mathematical model, apart from the normalized com­
plementary conditions and the continuity equation in the form V* . v* = 0, consists 
of the normalized momentum balance 

He (~ av* + v* . v*v*) = - A . V*p* + V .• * , 
St at* 

(11) 

where He = QU; /T( and A = Pe/T!> and the normalized constitutive relations (lOa), 
(lOb), (lOe) are 

H+ [.*(s*/Wd), .. . , Wdi .• *<il(s*/Wd), ... , d*(s*/Wd), ... , Wd j 
. Q*(jl(s*/Wd), ... 

s·=o 

... , s*/Wd] = 0, where Wd = sdsc . (I 2) 

Identities of normalized mathematical models of non-Newtonian flow and con­
sequently the hydrodynamic similarity is attained if, apart from identity of normalized 
complementary conditions, are fulfilled the numerical identities St = idem, He = 

= idem, Wd = idem and if the considered material group fulfills the condition 
H+ [ ... ] = idem, i.e. if by a suitable choice of parameters 1"( and s( which, then appear 
in the mentioned numerical conditions of dynamic similarity, can be attained the 
identity of the functionals (8). Because of its importance for the study of possible 
modelling of the non-Newtonian flows, we denote the condition H+[ . . .. ] = idem 
as a condition of rheological similarity. 

MATERIALS WITH TIME-DEPENDENT FLOW PROPERTIES 

Although the functional H (Eq. (4)) includes purely from the dimensional point 
of view only one single independent parameter having the dimension of time it is 
often advisable to choose independently two parameters with the dimension of time 
which are the characteristic shear rate D( and a characteristic relaxation time t(. 

This is because of the fundamenta! importance of viscometric experiments (i .e. 
measuring of the viscosity function) on the one hand, and relaxation expt'l"im~nts 
(measuring of various time-dependent material functions) on the other hand. 

In viscometric experiments the flow kinematics is characterized by the single 
scalar parameter D. Constitutive relations (4) based on conception of fluidity 7 , 
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Similarity of Non-Newtonian Flows. I. 791 

can be generally reduced for viscometric flows into the form 1: = f[OJ and normalized 
into the form -r+ = (+[O+J with the use of parameters rI and Db i.e. D+ = DIDI' 
and r+ = r/rI' The mentioned tensorial function of scalar argument D can also be 
represented by a system of three material functions among which is up to date for 
technical purposes the most important one the viscosity function r = D . 17[DJ 
expressing the relation between the shear stress and the shear rate in the same sense 
as that one known from the Newton's viscosity law. Quantities rI and DI can be chosen 
just so as to normalize into a suitable dimensionless form the viscosity function 
r+ = m[p] . p where m = (r/rI)/(DI DI)' p = DIDI' 

In relaxation experiments is a fundamental factor the unsteadiness of the experi­
ment. Corresponding viscoelastic, thixotropic etc. properties are described by certain 
relaxation functions (describing for inst. successive decrease in elastic stresses after 
the step change of deformation, successive decrease of apparent viscosity after the 
step increase of shear rate etc.) , which have generally the form r = Wet], where r 

is stress and t is the time variable. Such relations are normally normalized by intro­
duction of characteristic relaxation time tI into the form r+ = w[s+], where s+ = tltI 
and the stress is normalized in dependence on the course of the viscosity function, 
i.e. by r+ = r/rI ' 

Generally considered constitutive relations of the type (4) must in some way 
express the both mentioned phenomena, i.e. they must include at least two types 
of quantities having the dimension of times one of which is characterizing the visco­
metric affects and the other the relaxation effects. This can be formally done by 
normalizing 0 = d(l) by using the characteristic deformation velocity of material Db 
d *(l) = 0 * = d(l )ID I in the general constitutive relation (4). Other operations 
including parameters having the dimension of time, i.e. material time derivatives 
and integrations, are normalized by use of the relaxation time t I , i.e. 

Then holds 

00 

i = 1,2, ... , 

d *(j) = d(j)(tl)i - lID I , j = 1,2, . . . , 

s* = slt l • 

(14c) 

(14a) 

(14b) 

H*[-r*(s *), ... , -r*(i)(s*), .. . , d*(s*), ... , d*(j)(s *), .. . , s* ] = 0, (15) 
s* = 0 

where r+ = r*, d+ = d*, while the form of functionals H+ and H* differs only 
for a multiple constants Ve = tlDI with the kinematic tensors and time variables. 

, Analogical procedure, i.e. distinguishing between the kinematic quantities char-
acterizing the time change and the quantities characterizing the velocity gradient, 
can be applied as well in normalizing the mathematical model as a whole and use 
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consistently two parameters of the time dimension, the characteristic velocity gradient 
Dc = VclRe and the characteristic time interval tc regardless whether De and te are 
independent parameters or not. Kinematic quantities can be then normalized either 
by parameter D~ or te according to the physical meaning of the normalized quantity. 
Partial time variations are then normalized by the characteristic time interval te and 
convective time variations are normalized like velocity gradients, i.e. by the char­
acteristic velocity gradient De according to 

DX 1 DX ax 
- = - . - = - + St. {(v* . V*) x - a( ... ) + bD* . X} , (.16) 
Dt* te Dt at* 

where all kinematic quantities in parenthesis multiplied by dimensionless St number 
have dimensions of a velocity gradient and are normalized in the same way. Tensor 
of relative deformation and its material derivatives are usually chosen S06 as to 
comply with the relation d(1 ) = 0 , and in general they are given by 

d(i) = 0 0 - 1
), for j = 1,2, . . .. (17) 

Normalized kinematic tensors in a complete mathematical model are, therefore, 
introduced in the form 

d* = d = d * , (18a) 

s* = sIte. (I8b) 

In the terms of so introduced dimensionless quantities of the normalized mathe­
matical model, the functional (I5) can be written in the form 

co 

H [r*(s*/De), ... , Dei. 't*(il(s*/De), ... , d*(s*/De), .. . 
s*=o 

. .. , Dei-I. B. D*0-1)(s*/De), ... , s*/DeJ = 0, (I 9) 

where De = tdte, B = Del D1• 

From the point of view of the dimensional analysis, are thus at our disposal four 
parameters having the dimension of time, resp. the reciprocal time which normalize 
the constitutive description of the liquid and the complementary conditions. From 
these a number of dimensionless criteria can be formed having in spite of their appa­
rently kinematic character the significance of criteria of dynamic similarity. 
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Similarity of Non-Newtonian Flows. I. 793 

The summary of some of them is given in Table I. 

The dynamic character of these criteria, which cannot be of course studied only by methods 
of dimensional analysis, is given by their significance in the normalized differential momentum 
balance and in the constitutive relation. As an example is the character of Strouhal number 
which is apparently on ly a criterion of kinematic similarity of complementary conditions. From the 
momentum balance (11) is, however, obvious that it is as well a measure of non-stationarity of the 
velocity fields in the Eulerian way on the overall effect of inertia forces in comparison with 
inertia effects arising from purely convective velocity change of mass elements of the liquid. 
It has the same significance in the normalized constitutive relation (12) which follows from 
definition of material derivatives in the normalized form (16) and from relation Wi = St De. So 
in the case of flows without the effect of inertia forces, St is a measure of the effect of non-statio­
nary time changes of the velocity field on the relaxation phenomena as compared with effects 
of convective time changes. 

ISOTROPIC DISPERSIONS 

A number of materials can be used in rheometric experiments giving reproducible 
results, though dependent on the size of the apparatus, but there is an expressive 
heterogeneity observable by current means and often even comparable (as to the 
characteristic length dimension) with the dimensions of the apparatus. The hypothesis 

TABLE I 

Summary of Dimensionless Criteria with Characteristic Parameter Having the Dimension of Time 

Criterion 

Wd = s)!sc 

B = De/D) 

Wi = Det ) 

De = tdte 

X = D)te 

Ve = D)t) 

St = Dcte 

Use 

Criterion of dynamic similarity in the dimensionless description of the non­
Newtonian flow dynamics in consequence of non-linearity (resp. non­
automorfityll,lS,30) of rheological constitutive relations 

Criterion used in study of the liquid flows with non-linear or non-auto­
morficll ,lS,30 viscosity function 

Weissenberg number used in study of visco-elastic flows in flow situations 
where it is not appropriate to introduce the parameter te' Measure of 
relaxation effects in steady flow situations. 

Deborah number used as the measure of relaxation effects in situations 
where the characteristic time interval te can be easily defined 

Not used so far 

Viscoelastic number. Ve = idem is a part of conditions of rheological 
similarity 

Strouhal number is a part of formulation of similarity conditions of the 
complementary conditions 
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of continuum in its common meaning cannot be usually used here, and the effort 
to describe such systems as multiphase systems is frequent. This is usually based 
on the dynamics of motion of dispersed particles in the continuum media23

•
24 but 

also alternative procedures proved good21
•
22 based on phenomenological methods 

of · the mechanics of continuum when certain phenomenological assumptions are 
introduced on dynamic properties of the interface boundary between the wall of the 
system and the bulk phase. The slip function is introduced which instead of currently 
used conditions of perfect adhesion of the bulk phase to the walls, expresses as a con­
stitutive relation the dependence of the slip velocity of the bulk phase on shear 
stress at interfacial boundary, for inst. in a scallar form 

Vslip = f[1:J . (20) 

In the description of flow properties of the bulk phase there appears an additional 
material parameter v! of the velocity dimension. As well as the multiphase approach, 
this mentioned one based on the hypothesis of continuum introduces into the model 
the parameter having the dimension of length given by rI = VIS!. While the constitu­
tive theory including only parameters 1:1, and SI admits scaling-up at least for creeping 
flows thus satisfying the modelling law Dc = const., St = idem, at the modelling 
conditions Rc!(SIVI) = idem modelling with the use of original liquid is impossible. 

CONCLUSIONS 

In comparison with the discussed problems it is necessary in engineering practice 
at work with definite materials to consider only those of their flow properties which 
can be measured in a suitable way and not all those that are assumed by consti­
tutive theories. Besides, the present situation in engineering of non-Newtonian liquids, 
especially of visco-elastic materials, rough and thixotropic suspensions, is further­
more characterized by lack of suitable rheometric experiments which have been until 
now limited overwhelmingly to experiments in visco-metric flow situation, experi­
ments of " linear visco-elasticity", or technological experiments with undefinable flow 
kinematics. 

This is at best reflected in experiments in which some flow situation with visco­
elastic liquids were correlated based on conception of material relaxation time (I' 

Bird5 based his work directly on visco-metric experiments only, other engineering­
oriented authors define the relaxation time tI on basis of measurements of the visco­
sity function and of differences of normal stresses25

•
26 at various viscometric flow 

situations. Though the latter attitude led to satisfactory correlation for some flow 
situations interesting from the engineering point of view with the use of Deborrah 
and Weissenberg numbers 25 

- 27 and it demonstrates the relation betweelJ the relaxa­
tion phenomena and the existence of normal pressure differences, bu~ts use is 
obviously limited to a narrow class of model liquids since new rheometric experi-
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Similarity of Non-Newtonian Flows. I. 795 

ments28
•
2 9 present now already quantitatively, further phenomena which cannot 

be correlated with the results of experiments in only visco-metric flow situations. 

It is useful to note that any experimentally determined flow properties are ex­
pressed de Jacto as dynamic characteristics, i.e. dependences of the type Pc = 

= f(Uc' Rc' tc) between the operational parameters characterizing the activity of 
a given rheometrical apparatus. In the engineering analysis comprising the use 
of model liquids can be, instead of a priori supposed constitutive relations often 
evaluated on basis of a small number of unsuitably chosen rheometric experimentsS

, 

mutually correlated the dynamic characteristics of rheometric experiments whose 
analysis is otherwise difficult on the one hand and dynamic, kinematic and transport 
characteristics obtained by model experiments in technically-interesting flow situa­
tion on the other hand. So just there where in the analysis of results of rheometric 
experiment we cannot start either from an exact hydrodynamic analysis independent 
of the type of supposed constitutive relation, or can be supposed such suitable rela­
tion in the problem of correlation relation, the dimensional and similarity correlation 
methods will always have their place. 

The authors wish to express their gratitude to Prof. V. Bai ant for having beel/ enabled to do the 
studies some of which are being presented here, alld to Prof H. Steidl, Dr J . Sestak and Dr P. 
Mitschka for mallY fYl/itfl/1I discussions. 

LIST OF SYMBOLS 

d 
dOl 

o 
D 

D. 
Dc = VclRc 

f 
G 
H 
H+ , H * 

P 
p* 

Pc 

tensor of relative final deformations 
kinematic tensor of the j-th order (s - j) 

the rate of deformation tensor (s - 1) 
deformation rate, second invariant of 0 (s - 1) 

material characteristic deformation rate (s -]) 
characteristic velocity gradient of flow situation (s - 1) 

tensor function 
potential of volumetric forces (cm s - 1) 
material functional, constitutive rheological relation 
normalized material functions 
isotropic pressure (dyn cm - 2) 

normalized hydrodynamic potential 
characteristic stress resp. pressure difference (dyn cm -I) 
position vector (cm) 
characteristic dimension of heterogeneity (e.g. particle dimension) of the disper­

se medium (cm) 
characteristic dimension of the given flow situation (cm) 
time variable in the material functional (s) 
material constant (s) 
parameter of complementary conditions (s) 

time (s) 
material relaxation time (s) 
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characteristic time interval of the flow situation, characterizing the time changes 
in the sense of substantial time derivative (s) 
characteristic velocity of flow situation (cm s -1) 

characteristic slip velocity, material constant (cm s - 1) 

liquid velocity (cm S - I) 

x arbitrary symmetric tensor of second order 

Dimensionless Numbers 

A = Pcf'l parameter, supplying in Eq. (11) the Euler number 
B = De/DI dimensionless number, see Table II 
De = tdte Deborah number 
Eu = Pe /QU 2 Euler number 
He = QU;/'I Hedstrom number, representing in Eq. (11) the Reynolds number 
Re = aUeRe/f-l Reynolds number for non-Newtonian liquids 
St =, Dete Strouhal number 
Ve = Dltl viscoelastic number 
Wi = tIDe Weissenberg number 
Wd = sr/se Wilde number 

f-l 
Q 

Greek symbols 

Superscripts 

differential operator nabla (cm -I) 
Laplace differential operator (cm - 2) 

apparent viscosity, viscosity function (P) 
Newtonian viscosity (P) 
density (g cm - 3) 

tensor of deformation stress (dyn cm -2) 

deformation stress (dyn cm - 2) 

deformation stress, second invariant of tensor, (dyn cm - 2) 

characteristic stress, material constant (dyn cm - 2) 

T transposition of second order tensor (Xij)T = Xji 

+ quantities, normalized by parameters 'fl, s, 
i= quantities, normalized by parameters 'I' II' DI 

quantities, normalized by operating parameters Re, te resp. se 
(i), (j) i-th resp. j-th material derivative, see Eq. (5) 
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